Suchen

Fraunhofer LBF Verstellbare Steifigkeit

| Redakteur: Bernd Otterbach

Forscher am Fraunhofer LBF haben eine verstellbare Steifigkeit entwickelt, die sehr große Verstellbereiche zulässt. Damit kann auch eine Scheibe eine Feder sein.

Firma zum Thema

Bei vielen technischen Anwendungen werden definierte Steifigkeiten oder Federelemente beispielsweise in Fahrwerken, Lagerungen oder Schwingungstilgern eingesetzt. Allerdings wäre es bei wechselnden Umwelt- und Betriebsbedingungen in vielen Fällen vorteilhaft, wenn die Steifigkeit angepasst werden könnte. Die Forscher des Fraunhofer-Instituts für Betriebsfestigkeit und Systemzuverlässigkeit LBF fanden die Lösung in einer Konstruktion, bei der eine Kreisringscheibe aus Stahl als Feder dient. Mit drei Anbindungen je Seite werden die zu verbindenden Teile an der Kreisringscheibe befestigt. Die Steifigkeit in Richtung der Hauptachse verändert sich je nach Winkellage der Anbindungen zueinander. Der stufenlose Verstellbereich reicht von „blockiert“ (hart) bis zu einer relativ weichen Feder.

Sehr großer Verstellbereich

Verglichen mit den bislang genutzten Alternativen - ausgenommen die verstellbare Luftfeder - soll das Prinzip eine stufenlose Verstellung der Axialsteifigkeit über einen sehr großen Bereich ermöglichen. Eine Konfiguration kann durch einfache Verstellung des Rotationswinkels für sehr viele verschiedene Einsatzzwecke verwendet werden, so die Forscher weiter. Dadurch reichten weniger Bauteilvarianten aus, um verschiedene Einsatzzwecke abzudecken.

Beim Einsatz als Schwingungstilger kann der Tilger an ein breites Band von Erregerfrequenzen angepasst werden. Der konstruktive Aufwand und die aus der Fertigung resultierenden Kosten der Lösung sind vergleichsweise gering. Durch die Rotation als Verstellbewegung ist keine komplexe Aktorik zur Verstellung notwendig.

Kleine Tilgermassen möglich

Durch die möglichen Bauformen können die Aktorik und die unter Umständen verwendete Sensorik außerdem platzsparend und mechanisch geschützt im Inneren untergebracht werden, ein gekapselter Aufbau ist möglich. Dabei kann die Tilgermasse als Gehäuse dienen. Im Gegensatz zu Ansätzen, bei denen die Veränderung der Steifigkeit über die freie Länge einer Blattfeder realisiert wird, ändert sich der Bauraum durch die Verstellung nicht. Es sind keine Aktorikteile an der Tilgermasse notwendig. Hierdurch sind sehr kleine Tilgermassen möglich, was sich positiv auf die Skalierbarkeit der Lösung auswirkt.

Für Schwingungsdämpfung in technischen Systemen

Technisch anwenden lässt sich die neue Konstruktion überall dort, wo verstellbare Steifigkeiten sinnvoll und vorteilhaft sind. Dies kann beispielsweise bei der Schwingungsdämpfung in technischen Systemen insbesondere in der Automobiltechnik sowie im Maschinen- und Anlagenbau der Fall sein. Auch der Einsatz in aktiven oder passiven Lagerungen von Maschinen, Maschinenbauteilen oder Aggregaten, beispielsweise als Maschinenlager, bietet sich an. Hierbei liegt die Resonanz bei harter Einstellung über, bei weicher Einstellung unter dem Betriebspunkt der Maschine. Hochgefahren wird die Maschine in „harter“ Einstellung, vor Erreichen des Betriebspunktes wird das Lager „weich“ geschaltet, wodurch ein überresonanter Betrieb fast ohne Resonanzdurchfahrt ermöglicht wird.

Energy Harvesting möglich

Im Rahmen der Betriebsfestigkeits- und Bauteilprüfung lässt sich die neue LBF-Konstruktion zur Anbindung der zu prüfenden Bauteile einsetzen. Hierdurch können die in der realen Umgebung der Bauteile vorhandenen Steifigkeiten in der Prüfung berücksichtigt werden. Dank der verstellbaren Steifigkeit lassen sich die Anbindungsbedingungen schnell anpassen.

Über auf dem Ring applizierte Piezowandler ist eine Nutzung der Verformung des Rings als Energiequelle für das Energy-Harvesting denkbar. Die gewonnene Energie lässt sich beispielsweise zum Betrieb energieautarker Systeme wie Sensorknoten einsetzen.

(ID:380159)